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STATIONARY DIFFRACTION OF WAVES BY A CIRCULAR APERTURE IN 
AN ELASTIC HALF-PLANE l 

L.A. ALEKEEYEVA 

A solution of the problem of the stationary diffraction of waves by a 
circular aperture in an elastic half-plane is suggested. It is obtained 
by using the methods of separation of variables, re-expansion of cylindrical 
functions in plane waves and multiple reflections. A solution for a 
different type of incident wave is constructed. 

A solution to the similar problem of antiplane deformation was 
obtained using the method of reflected sources /l/. When there is plane 
deformation the problem of steady-state oscillations in /2/ is reduced 
to a system of Fredholm integral equations of the second kind. 

1. Formulation of the problem. Consider the elastic (i., p. p) isotropic semi-space 
z<ll. h> I)with a circular cylindrical cavity of radius R, whose OZ axis is parallel to the 
boundary of the half-space (Eig.1). 
cavity 

Fig.1 

Under conditions (1.1) and (1.2) a state of plane deformation is realized which can be 
described by the Lam; potentials (r.3. satisfying the Aelmholtz equations /?, 4/ 

The displacement components UX. U& are defined in terms of q.q by the relations 

Suppose-a stationary load acts on the boundary of the 

where pj (f= r, 9) are the known functions which can be 
expanded in a complex Fourier series 

pj=spmeine, j=r,O. 

II 

Here r. 8, .z is a cylindrical set of coordinates 
with the polar axis OX, and U,j are the components 
of the stress tensor. 

The boundary of the half-space is not affected 
by the loads 

(1.4) 

Here and everywhere belok- WE omit the time xwltiplier .$-zu1 . and determine the complex 

amplitudes G( = wlrp (i 7 211). p = lrE,w. 
Using Hooke's law for an elastic medium /4/, we write the boundary conditions for the 

potentials 

P (81 
Ly -hiq=--+-, Mr,-L~=_L$L (1.5) 

L+pP?T++-&& 

M2&-_t-& r=R 

(11u3.3p?2$)~ _+?&=o 

._!&_(p2 +&)q=o, x=h. 
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We separate the potentials of the unknown field into components, each of which 

appropriately satisfies from Eqs. (1.3) 

(1.7) 

We conditionally call the potentials with even indices waves which travel from the 
cavity, and we call those with odd indices reflections, from the plane boundary of the half- 
space. The displacement and stress components I+', UN' which correspond to them satisfy the 
following conditions on the boundary of the domain: 

2k+l 
axJ = -a:;, f = z, y, 3 = h (1.8) 

2k+2 = _ 
Ulj 

2h’*1 a,, ) f = r, 0, I’ = R; k = 0, 1, 2, . . . . (1.9) 

Relations (1.1) hold for a,', u,e'. It follows from (1.8) and (1.9) that the total 
potentials (1.7) satisfy the boundary conditions (1.5) and (1.6). 

We shall seek the even potentials in the form of the Fourier-Bessel series 

qj= 2 aiH;r)(ar)e~r&, += (1.10) 
n---OS 

n$_b!H,(Br)e~"e 

where H,,(l)(.) is a Hankel function which satisfies Sommerfield's radiation conditions /l, 4/. 
The components in the sum (1.7) are partial solutions of Helmholtz's Eqs. (1.3). We shall 
represent the potentials of the waves reflected from the boundary of the half-plane in the 

(1.11) 

Rel/&*-k*~O,Im1'~-~0, k= cz p 

6, (5) = 452~,'Kz.?lim _ (2Z? _ B?)Z = 0, (1.12) 

Iiere L, is a contour in the plane of the complex variable 5 = E, i ig,:and coincides 
with the & axis everywhere except in the e-vicinity of the points ha,j$,_Cv, where 5~ 
are two real roots of Rayleigh's equation, a < P < y 14. 51, which must be circumvented with 
respect to the e-semicircles, as shown in Fig. 2. The conditions on the radical signs in 
(1.11) correspond to the waves which leave the boundary and decay as z--t cc. 

The function J/E* - k* (k = a, p) has branching points ++. The sections of the E 
plane along the EC axis and the segment j i, /<k. on which Rel G --2 = 0, separate the 
two sheets of the Riemann surface of the function l.fL. in each of which the quantity 
Re flE* - k2 is either positive or negative, Fig. 2 shows the domain of Im l/i? - kz , which 
is of fixed sign, on the sheet Re 1/m .=> Cj. The contour L, must pass into the domain 
Im If_ %.< 0 which also dictates the above-mentioned direction of the circuits of the 
points ?a. i-i, -+I?. 

The boundary conditions (l.l), (1.5) and (1.6) enable us successively to determine $',q'. 
if $j-I $J-1 are known. 

2. A lumped source in the half-plane. Suppose ~$j-',J.;-~.are known and are 
defined by the relations (1.10). To find q'.$ we change the potentials gj-l,q~-' represented 
by cylindrical functions - expanding them into plane waves. For this we use the representation 
/6/ 

- 
Art + 

LE a P 
-1, -y -j -a 

+ 

Fig.2 Fig.3 
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(- 4” Hf (kr) ei*le = 7 s exp(ik(zcost) +ysinn)+ inn)dtj 
c 

(the countour C is shown in Fig.3). We introduce the change of variables ',= &I A it,= I; sin I), 
converting the integration contour C into the real axis L : E2 = 0. Along C 

Hence it follows that 

Consider the contour Cck: q = Arcsin (Elk) (k = CC, p), I rll 1 <n/Z, where E E L,. By virtue 
of the analyticity of the integrand in (2.1) the contour CEh is equivalent to C; therefore 
in the representation (2.2) we can change the integration contour L to L,. 

Using (2.2) for I$+, $2-1 (j = 2m + l), determined by the series (1.10) and (1.11) for the 
potentials cpj,@, we shall write the boundary conditions (1.6), which when x = h have the 
form of Fourier integrals with correction on the contour L,. Equating coefficients of 
&E. we obtain a linear set of equations for determining the functions aj(E), b'(E). Solving 
it, we obtain 

(2.3) 

exp(- hl'E*- k2) . 

3. Difiraction at an aperture. To determine the functions ~?-l. $j' (i = 2k - I), 
we will change to a polar system of coordinates in expressions (1.11). Bearing in mind the 
expansion /3/ 

C' r’i ri = f i”J,, (iir) e” ri (3.1) : -L. 

which is analytically continuable into the plane of complex '1. we can expand-the potentials 
(1.11) using the cylindrical functions 

From the above and from (2.3) it follows that 

-f$- j, (E. f3) j,, (5, a) & (3 dE 
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The determination of the functions (cj-l,q'-l reduces to the solution of the problem of 
the stationary diffraction of waves (3.2) byacircular aperture in an infinite plane, whose 
solution is well known /l/. In the notation used here 

Here Z, is the 

a:,” = (a,,jA,l (aR, fiR) L- b,,jA,,n (pt?))/A, 

b? = (u,)A,,z (zR) Y- b,,jA,,l (IN BR))IA, 
A,, = aIn (aR, HI,“) @In (BR, H!!‘) - a~,, (aR, H!?)% (PRY R!f’) 

A,,1 (~1, iz) = 02” (21, J,) Q)p” (~2, H!!‘) - @I, (~1, J,)% (Q> Hi?‘) 

A,? (I) = $1, (2, J,,) @n, (z, HI;“) - @z,, (G J,) ‘J&n (2, HI:‘) 
011, (z. Z,) = (2~9 - pR*) Z, (z) - 232, (z), 
CD:, (z, Z,) = 2n (Z, (d) - ZZ”’ (2)) . 

(3.4) 

identifier of the cylindrical function H,‘]) or J,. When j=O 

ano = (p,e% (BR H”‘) - P.,%, (BR H”‘))‘d, 

b,,o = (pn& (aR,‘H$) - p,&, (ad: H&:A,, 

(3.5) 

The process of solving the problem thus consists of the following. Using formulas (3.5) 

we find a,O. b,,O? i.e. the potential of the first wave emitted by the cavity. Then, using 

(2.3), (3.2) are the potentials of the waves reflected from the boundary of the half-plane. 
Further, using formulas (3.4), we determine a,,‘? b,2 etc. 

We can represent the solution by cylindrical functions, using for qJ,tl either relations 
(1.10) and (3.2) or the Fourier-type contour integrals (1.11) and (2.2) when O<z<h. A 

suitable representation is chosen, dependent on the boundary in whose vicinity the 

characteristics of the stress-deformed state "j. 0,j are chosen. In view of their awkwardness, 
the expressions for the latter are not presented here. 

In relations (l.ll), (3.2) and (3.3) we can pass to the limit as e-0, as in /7/. The 
integrals obtained should then be understood in the sense of the principal value in the 
vicinity of the points -&, around =c.IP, and they exist as non-eigenvalues. In addition, 

terms appearing outside the integral will occur which, apart from a multiplier, are equal to 
the difference of the residues of the integrands at the points &, which describe the 
effect of Rayleigh surface wave. 

We can propose other methods of calculating the integrals along L,, based on the 
transformation of the integration contour using Jordan's lemma, modifying it for a domain 
with branching points: we shall not dwell on them here. 

4. Investigation of the convergence of the series and the existence of 
the integrals. Using the asymptotic form of Hankel's functions when InI-ocand fixed 
argument /8/, from relations (3.5) we obtain 

]"$I _$'qj$_A$ (?:,'"I 

( hnO I- T '@;b;'-"$ (?'I"!, CL. 

Hence for fairly large /n 1 it follows that 

lo,“flf? M)i<C IP,,- P,el ($j"'<CI Pnr - P,,@I 

Ib,OHI,')(BR)l<CIP,,$P:.eI 

i.e. series (1.10) converge absolutely and uniformly with respect to r,e and are continuous 
in the domain r&R of the function. If IAn~j=~(Inl-4) is required when Inl- oo(j=r,8), we 
can obtain similar estimates for the differentiated series, which validates the convergence 
and operation of term-by-term differentiation of series (1.10). For j = Pk, k = 1,2,.., the 
convergence of the Fourier-Bessel series is similarly proved on the basis of the existence 
of continuous and differentiable potentials $a,cp'1. 

Note that, by virtue of the choice of the integration contour L,, the integrands in 
expressions (1.11) are infinitely differentiable with respect to z and y, and approach zero 
as l:I-02. Since 

Ifn (f+ k) I< (2 \ 5 I _I k)'"' Wllen 1 E 1 > k, 1 fn (t, k) ) = i when1 E 1 Q k 
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for fairly large N we have 

Since for fairly 

and ~<h,h>& the integrals (1.11) exist and are continuous functionswithresPect to z and 
y in the domain .? < h. 

Similar estimates can be obtained for the integrals (1.111, formally differentiated with 
respect to * and y, whose uniform convergence follows from the existence of the integrand 
majorant which can be integrated in (-m,oc) 

161” =P ((S -h) I E 1). I E Irn exP (--h IE I) 
which also validates the differentiation operation under the sign of the integral. 

Consider the problem of the convergence of the method of successive reflections, i.e. the 
series (1.7). Note that the solution of the problem can be reducedtoasolution oftheinfinite 
set of linearequationswith a determinantofthenormaltype. The proceduredescribedabove in an 
implementationofthemethodof successive approximations. Forthis theunknownpotentials should 
be represented in the form ~='lo--~81.~=toT$* 

preserving the previous form (1.101 for Vo,to and (1.11) for VI? $1. a,,', M. are determined 
in terms of atlo b,,O from the relations (3.3). 

,intl 
From the conditions on the contour of the cavity 

(1.5) equating the coefficients for - we obtain an infinite set of linear equations for 
determining the coefficients unr. b$‘. 

By virtue of the peculiarities of the behaviour of Handel functions as n-00, the system 
obtained is not suitable for analysis. If, instead of the coefficients on09 b,O we introduce 

m n 
OXU', (i ,I / - l)'[ ?n j!! (In ) i 1y I2n I’! 

(Cd)“,’ 
, d,,o = b 0 ” (f3Fw 

and write the set with the corresponding change ano, b,O, . we shall arrive at a system with a 
determinant of the normal type. The sum of the moduli of the coefficients of the matrix of 
the system is limited by the double series 

whose convergence follows from the condition R<h. The free terms approach zero as ; ?I / -0~ 
no slower than (\J+~--Q, I )F+-O. Thus the conditions of the existence and uniqueness of the 
bounded solution (see /9/j - which can be obtained using the reduction method or the method 
of successive approximations, as described above - hold. 

It follows from the latter inequality that the deeper the aperture, the more rapid the 
convergence and the lower the frequency of the acting load. From the physical point of view, 
the method of successive reflections is preferable since often, if great calculational 
accuracy is not required, WE can limit ourselves to one or two reflections to obtain data which 
are authentic from an engineering point of view. 

5. Problems of stationary diffraction. When solving problems of stationary 
diffraction the field of the incident wave is usually considered as given. Any solutions of 
Eqs. (1.3) are taken as the field. Here by the incident wave - whose potentials we denote 

bY @_.Y_ - we shall understand the different solutions for a continuous elastic half-space 
with a free boundary (1.6). The solution of the diffraction problem will be soughtinthe form 

'I = O,T T@_.$ = Y_ 7 Y_ 

where @_,Y_ are potentials of the waves reflected from the free boundary. It is clear that 
we can reduce the problem of determining @_.v'_ to that considered above. 

In seismology, when analyzing the influence of remote seismic waves on buildings, we 
usually consider the plane longitudinal and transverse waves and Rayleigh surface waves. For 

close earth tremors or oscillations of artificial origin, suchas industrial explosions, it 
is convenient to model the field of the incident wave as the field of a lumped source (the 
centre of pressure, concentrated momenta, forces, dipoles, etc.). We shall assume that in 
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the vicinity of the cavity these fields can be expanded as follows: 

(3.1) 

We shall present some of them. 
Plane longitudinal harmonic waves 

O,_ = esp (izpcos (11 - fJ)) - # exp(-iiPp COS(I~ Lb)) 

y' + =~erp(-ip~ros(l~ _: 6*)) 

i”fl,,l = (- l)n (- i (ah cos 6 T n6) + +$f exp (i (ah cos 6 I 126)) 
. 

i”b “I=(- 1)” * esp (i @!I COB 6* L ,A*)) . 

Here 6 is the angle between the wave vector and OS axis. 

E = asin 6, 6* = arcGn(E'@). pcos q = I'- II, Psin q =y . 

Plane transverse waves 

dr (5. B, 
@_= A(:) 

- esp (- icrpc~~s(q - 6*)) 
. 

Y’,= exp(i&cos(ij -6)) -'- se\-p(-- ifi;,cr+(l) T 6)) 

Pa,,’ =w esp (i (Z/I cos 6* L ~6*)) 
; 

inbtil= (- l)“exp(- i(@cos 6 - n5)) c 

~esp(i(@cos6 2 nb)) 

E=fisin6, 6*=.4rcsin(E’z). 

Rayleigh waves 

@+ = exp (i;ry $ (I - II) jr-), 

(di (E) = gi (i, k) 1/m, i = i, 2). 

Waves from a lumped source. We can represent the field of the source, taking account of 
its reflection from the plane boundary, in the form 

Here r,, 0, (Fig.1) are polar coordinates connected to the source. The coefficients 
A,l.B,,’ are calculated using formulas (3.3), with ak’.bAy;’ replaced by .+l.,O. B,,O and a,<‘. b,,’ by 
A,,]. B,‘. 

Using the summation theorem for Bessel functions /l/, we can change to the form (5.1). 
As a result we obtain 

a,, '=,j= (Lt.J,, (al?,) -- .lP,,,HF'(aR,))exp (i&) 

h’ = $ (Bf,-J,, (fit?,) 7. B,q,,l~l”(BH,))exp(ipe”l p=--’ 

(R,.e,) are the polar coordinates of the point 0 in the system (O,,r,,6,1. 
The field of the reflected waves has the form 

Since the coefficients a,,‘. b,’ are known, the component potentials are determined 
successively, as described above. 
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REFRACTION OF PLANE-POLARIZED WAVES AT THE BOUNDARY 
OF AN ELASTIC AND ELASTOPLASTIC HALF-SPACE* 

A.G. BYKOVTSEV 

Selfsimilar solutions of dynamic equations for antiplane deformation in 
an ideal elastoplastic medium are considered. A solution is constructed 
of the problem oftherefraction of plane-polarized plane waves of an 
arbitrary profile which penetrate from the elastic to the elastoplastic 
half-space. 

Selfsimilar solutions were investigated earlier /l-4/ when the rates 
of displacements and stresses depend only on the ratio of the coordinates. 
The selfsimilar problem of the refraction of a plane elastic wave into an 
elastoplastic half-space with boundary conditions like those of Coulomb's 
law of dry friction, and conditions guaranteeing full contact at the 
boundary of separation, were analysed in /5, 6,'. 

1. Consider the dynamic problem of the theory of complex displacement in an ideal elasto- 
plastic medium. In a rectangular Cartesian system of coordinates I, the vector of the rate 
of displacement 1:‘ is directed along r3 axis and depends only on r,, J? and the time t. 

All the components of stress vanish, apart from T, = (T,~ (x1, t2, t), T* = uz3 (L,, x2, 1). The 
equations of motion in this case have the form 

5 _L 'T2 n& (-J =. 
OS1 irz, ui (1.1) 

The full deformations are the sum of the elastic and the plastic part, and the elastic 
deformations are connected with the stresses by Hooke's law 

')11 = ;'l“ .L ,il', ,'2 = ys~ L I'?'; T1 = 2uyl~, T*= 2~~~,P . (1.2) 

In the plastic domain, the stresses satisfy the condition of plasticity, and the rates 
of the plastic deformations are determined from the associated flow rule 

11 2 2 $2 = p; yl’P = I#:‘,, y;p = I&, . (1.3) 

The total rates of deformation are expressed in terms of the displacements by 

i ^. .,,I' = - '" , 1 aI0 
2 dr, y*' = T r 

1 (1.4) 

Differentiating relations (1.2) with respect to time and eliminating the values of the 
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